In this paper, we survey our recent work on designing high order positivity-preserving well-balanced finite difference and finite volume WENO (weighted essentially non-oscillatory) schemes, and discontinuous Galerkin finite element schemes for solving the shallow water equations with a non-flat bottom topography. These schemes are genuinely high order accurate
in smooth regions for general solutions, are essentially non-oscillatory for general solutions with discontinuities, and at the same time they preserve exactly the water at rest or the more general moving water steady state solutions. A simple positivity-preserving limiter, valid under suitable CFL condition, has been introduced in one dimension and reformulated to two dimensions with triangular meshes, and we prove that the resulting schemes guarantee the positivity of the water depth.