*Rings and Algebras*

####
*Fang Li*
Zhejiang University
*Zongzhu Lin*
Kansas State Univesity

####
Rings and Algebras
mathscidoc:1702.31001

####
*Liping Li*

####
K-Theory and Homology
Representation Theory
Rings and Algebras
mathscidoc:1702.02008

####
*Liang Shen*
Department of Mathematics, Southeast University

####
Rings and Algebras
mathscidoc:1612.31001

####
*Fan Qin*
Shanghai Jiao Tong University

####
Representation Theory
Rings and Algebras
mathscidoc:2202.30003

####
*Liping Li*

####
Representation Theory
Rings and Algebras
mathscidoc:1702.30011

####
*Liping Li*

####
Representation Theory
Rings and Algebras
mathscidoc:1702.30007

####
*Nguyen Thi Thanh Tam*
(Hung Vuong University, Viet Tri, Phu Tho, Vietnam
*Hoang Le Truong*
Mathematik und Informatik, Universität des Saarlandes, Saarbrücken, Germany; Institute of Mathematics, VAST, Hanoi, Vietnam; and Thang Long Institute of Mathematics and Applied Sciences, Hanoi, Vietnam

####
Rings and Algebras
mathscidoc:2203.31002

####
*Yang Chen*
Mathematics Postdoctoral Research Center, Hebei Normal University, Shijiazhuang, Heibei, China
*Kaiming Zhao*
Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada; and School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
*Yueqiang Zhao*
School of Mathematics and Statistics, Xinyang Normal University, Xinyang, Henan, China

####
Rings and Algebras
mathscidoc:2203.31004

####
*Natalia K. Iyudu*
School of Mathematics, University of Edinburgh, United Kingdom
*Susan J. Sierra*
School of Mathematics, University of Edinburgh, United Kingdom

####
Rings and Algebras
mathscidoc:2203.31003

####
*Nan Gao*
Department of Mathematics, Shanghai University, Shanghai, China
*Wen-Hui Zhao*
Department of Mathematics, Shanghai University, Shanghai, China

####
Rings and Algebras
mathscidoc:2203.31001