The moment-entropy inequality shows that a contin- uous random variable with given second moment and maximal Shannon entropy must be Gaussian. Stam’s inequality shows that a continuous random variable with given Fisher information and minimal Shannon entropy must also be Gaussian. The Crame ́r- Rao inequality is a direct consequence of these two inequalities.
In this paper the inequalities above are extended to Renyi entropy, p-th moment, and generalized Fisher information. Gen- eralized Gaussian random densities are introduced and shown to be the extremal densities for the new inequalities. An extension of the Crame ́r–Rao inequality is derived as a consequence of these moment and Fisher information inequalities.