The numerical approximation of high-frequency wave propagation in inhomogeneous media is a challenging problem. In particular, computing high-frequency solutions by direct simulations requires several points per wavelength for stability and usually requires many points per wavelength for a satisfactory accuracy. In this paper, we propose a new method for the acoustic wave equation in inhomogeneous media in the time domain to achieve superior accuracy and stability without using a large number of unknowns. The method is based on a discontinuous Galerkin discretization together with carefully chosen basis functions. To obtain the basis functions, we use the idea from geometrical optics and construct the basis functions by using the leading order term in the asymptotic expansion. Also, we use a wavefront tracking method and a dimension reduction procedure to obtain dominant rays in each cell. We show