It has been an open question whether the family of merit functions $\psi _p\(p> 1) $, the generalized Fischer-Burmeister (FB) merit function, associated to the second-order cone is smooth or not. In this paper we answer it partly, and show that \psi _p is smooth for \psi _p , and we provide the condition for its coerciveness. Numerical results are reported to illustrate the influence of \psi _p on the performance of the merit function method based on \psi _p .